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Abstract 

The estimation of average molecular dimensions from 
crystallographic data is examined from a statistical 
point of view. Given a sample of X-ray or neutron 
determinations of a particular molecular dimension, it 
is shown that the best estimate of the mean depends on 
the relative importance of experimental errors and 
environmental (e.g. crystal packing) effects. If experi- 
mental errors are more important, the observations 
should be weighted according to the precision with 
which they were determined. If environmental effects 
are more important, an unweighted mean is usually 
preferable. Alternatively, a 'semi-weighted' mean can 
be used. The importance of environmental effects can 
be assessed by a X 2 test. Particular emphasis is placed 
on the estimation of average molecular dimensions 
using the Cambridge Structural Database. This data- 
base contains the atomic coordinates of over 30 000 
organo-carbon crystal structures, but has only limited 
information about their e.s.d.'s. However, it is shown 
that the information can be usefully exploited in the 
estimation of average molecular dimensions. 

I. Introduction 

The determination of average molecular dimensions is 
one of the major objectives of crystallographic 
research. Apart from their intrinsic interest, com- 
pilations of'standard' bond lengths and angles (Sutton, 
1958, 1965) are invaluable as benchmarks in the 
evaluation of new structural data. Estimates of the 
average geometries of complete chemical residues [e.g. 
pyranoses (Arnott & Scott, 1972), nucleic acid bases 
(Taylor & Kennard, 1982a)] are useful in constrained 
least-squares refinement, normalization of E values and 
model building. In addition, they have a variety of uses 
in theoretical chemistry. 

The mean value of a molecular dimension can be 
estimated in several ways. The simplest procedure is to 
calculate the unweighted average of all available 
observations. Alternatively, each observation can be 
weighted by a factor of 1/o 2, where tr is the e.s.d, of the 

observation, derived from the least-squares covariance 
matrix. The choice between these methods is not 
straightforward, because the observed values of a given 
molecular dimension in a series of related crystal 
structures are influenced by both experimental errors 
and environmental (e.g. crystal packing) effects. The 
optimum procedure for estimating the mean depends 
on the relative importance of these factors. 

In this study, we apply statistical techniques 
described by Cochran (1954)* to the problem of 
estimating mean molecular dimensions. Particular 
emphasis is placed on the estimation of mean molecular 
dimensions using the Cambridge Structural Database 
(CSD; Allen et al., 1979). CSD contains the atomic 
coordinates of over 30000 organo-carbon crystal 
structures, but has only incomplete information about 
their e.s.d.'s. 

II. Preliminary considerations 

II. 1. How meaningful is a mean ? 

It is always arithmetically possible to calculate the 
average value of a sample of crystallographic observa- 
tions. It is not always useful, or even physically 
meaningful, to do so. Thus, we could not obtain a 
sensible mean value for the distance between bonded 
carbon atoms by averaging a mixture of C - C ,  C=C 
and C - C  bond lengths. The average value of a sample 
may be meaningful in some situations but not in others. 
For example, we recently found (Taylor, Kennard & 
Versichel, 1983) that the mean H . . . O  distance of a 
sample of hydrogen bonds of type (1) was significantly 
longer than that of a sample of hydrogen bonds of type 
(2). 

H \ ,  / C / 
H - -  N - -H  . . . .  O=C C ~ ' N  +--H . . . .  O = C  

H / \ C / \ 
(1) (2) 

* Virtually all the statistical formulae discussed here are taken 
from Cochran's excellent paper, to which readers are referred for 
mathematical proofs, etc. 

0108-7681/83/040517-09501.50 © 1983 International Union of Crystallography 



518 AVERAGE MOLECULAR DIMENSIONS FROM CRYSTALLOGRAPHIC DATA 

Since this result is of some chemical interest, the 
estimation of the mean H . . .  O distances was useful in 
this case. However, the same mean values would be of 
limited use in model building because the hydrogen 
bond is very sensitive to its environment. Thus, the 
H . . .  O distance of any given hydrogen bond is unlikely 
to be close to the corresponding average value. In 
deciding whether an average value is meaningful, it is 
therefore important to consider the context in which it 
is to be used. 

Average molecular dimensions derived from 
crystallographic data may be systematically different 
from the equilibrium values of the corresponding 
dimensions in the gas phase. For example, the O . . . O  
hydrogen-bond distance in ice I is 2.75 ,/k (Kamb, 
1968), compared with an equilibrium O . . . O  separa- 
tion of 2.98 A in the gas-phase water dimer (Dyke, 
Mack & Muenter, 1977). The difference is partly due to 
cooperative interactions that occur in the solid state but 
not in the vapour phase, and partly due to the 
compressive effect of the crystal lattice. Furthermore, 
crystallographic observations may be significantly 
affected by libration, and therefore not comparable 
with dimensions determined by other physical methods. 
Thermal-motion corrections based on the segmented- 
body model (Johnson, 1970) can be as large as 
0 .02-0.04/ t ,  for C--H and N - H  bond lengths, even at 
23 K (Jeffrey, Ruble, McMullan, DeFrees & Pople, 
1981). There are, of course, other reasons why 
dimensions determined by different physical methods 
may not be comparable (Robiette, 1973); for example, 
X-ray observations may be influenced by the effects of 
non-spherical electron density. 

II. 2. Assumption o f  random sampling 

All the statistical methods outlined below are based 
on an assumption of random sampling; i.e. we assume 
that the available observations of the molecular 
dimension being studied are a random sample of all 
possible observations. In crystallographic research, this 
may not always be the case: crystal structure 
determinations are not performed at random, but for 
specific reasons (we hope!). For example, many 
structures have been determined by neutron diffraction 
because they contain very short, possibly symmetrical, 
O - H . . . O  hydrogen bonds. Thus, an estimate of the 
mean H . . . O  distance based on all available neutron 
data is likely to be biased towards short values. 

II. 3. Accuracy o f  experimental error estimates 

Many of the statistical formulae given below involve 
the e.s.d.'s of crystallographic observations. The 
accuracy of these quantities is therefore of some 
importance. Previous work (Hamilton & Abrahams, 
1970; James & Williams, 1973; Taylor & Kennard, 

1983; Verbist, Lehmann, Koetzle & Hamilton, 1972) 
shows that e.s.d.'s derived from least-squares 
covariance matrices are usually too small, because 
systematic errors in the diffraction experiment are not 
taken into account. Most studies suggest that the 
e.s.d.'s should be multiplied by a factor of about 
1.3-2.0 in order to reflect the true experimental 
uncertainties in the observations. We therefore adopt 
the following procedure in this paper: the e.s.d.'s 
obtained from least-squares analysis are multiplied by 
1.5, and the resulting 'corrected' values are regarded as 
exact estimates of the true experimental standard 
deviations of the corresponding observations. Of 
course, the true correction factor for any given e.s.d, is 
unlikely to be exactly 1.5. However, e.s.d.'s are usually 
only quoted to one or two significant figures, so small 
inaccuracies in the correction factor are immaterial. 

III. Mathematical models: testing for environmental 
effects 

We now assume that: (i) a total of k crystallographic 
observations of a given molecular dimension are 
available (xi, i = 1, 2, ..., k), (ii) each observation, x i, 
has associated with it a 'corrected' e.s.d., a(xt), which 
can be regarded as an exact estimate of the experi- 
mental standard deviation of the observation, (iii) the 
average value of the observations is physically mean- 
ingful in the context in which it is to be used, (iv) the 
effects of libration, non-random sampling, etc., are 
acceptably small. 

In order to estimate the mean value of the dimension, 
we must first choose between two mathematical models 
for the data. In model A, we assume that the ith obser- 
vation can be expressed as: 

xi = # + ei (1) 

where # is the true value of the molecular dimension 
and ei is the experimental error in its measurement. If 
we choose this model, we are effectively assuming that 
environmental effects are negligible compared with 
experimental errors, i.e. that the true value of the 
molecular dimension in the ith crystal structure is not 
significantly different from its true value in the j th  
structure, despite the difference in chemical environ- 
ments. In model B, we assume that the true value of the 
dimension varies appreciably from one structure to the 
next because of crystal-packing forces, etc. Thus, the 
ith observation must be expressed as: 

xt = gi + ~:i (2) 

where 

gi:/: aj, i d:j. (3) 

If this model is chosen, we are effectively trying to 
determine the overall mean, g, of the gi. It is 
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particularly important in this case to consider whether 
such a quantity is physically meaningful. 

In order to decide which of the models is most 
appropriate, it is necessary to determine whether the 
observations agree with one another as closely as 
would be expected from their e.s.d.'s. This can be done 
by calculating the weighted sum of squares of 
deviations: 

k 
Z 2=  Y. wt (x t - -Xw)  2 (4) 

l=l  

where: 

w I = 1/a2(xl) (5) 

and Xw is the weighted mean of the observations: 

k k 

fCw= Y. wtx j Y. W v (6)  
/=1 l=l  

If environmental effects are negligible, the weighted 
sum of squares of deviations follows (approximately) a 
X 2 distribution with (k - 1) degrees of freedom. Table 1 
illustrates the calculation of X 2 for: (i) the N(7)-C(8)  
bond lengths in twelve adenine derivatives, (ii) thirteen 
N - H  bond lengths determined by neutron diffraction, 
(iii) the N(1 ) -C(2 ) -N(3 )  valence angles in thirteen 
cytosine rings, (iv) the C (5) -C (4 ) -0 (4 )  bond angles in 
fifteen uracil derivatives, (v) the (C)O--P--O(H) 
valence angles of eight mono-anionic terminal phos- 
phate groups (i.e. ROPO3H-), (vi) the H . . .  O distances 
in thirteen N - H . . .  O hydrogen bonds determined by 

neutron diffraction.* Z 2 values that are statistically 
significant at the a = 0 .05  level are marked. Also  given 
in the table is the mean square value of  the observa- 
tional e.s.d.'s: 

k 
a 2 ( x t )  = Z a2 (xi)/k (7) 

t=1 

and the sample variance: 

k 
a 2 (sample) = ~. (x  I - ju)2/ (k  - 1) (8) 

t=1 

where .~u is the unweighted mean of the observations: 

k 

Sou= Z x i /k .  (9) 
/=1 

If environmental effects are small, a2(xt) and 
a2(sample) should be similar in magnitude. 

The results in Table 1 show that environmental 
effects are negligible for the adenine N(7)-C(8)  
distances (3) and the cytosine N(1)--C(2)-N(3)  
intra-ring valence angles (4). Presumably, an appreci- 
able amount of energy is required to distort these 
parameters from their equilibrium values. The X 2 
statistic indicates that environmental effects are signifi- 
cant for the N - H  bond lengths and ( C ) O - P - O ( H )  

* These data are used throughout the paper to illustrate various 
calculations. They are subsets of data used in recent surveys of 
nucleoside geometries (Taylor & Kennard, 1982b) and N - H . . . O  
hydrogen bonds (Taylor & Kennard, 1983). 

k 
a=(x,) 
a=(sample) 
X 2.  

Adenine 
N(7)-C(8)  

bond lengths (A) 

x, o(x,) 

1.315 0.003 
1.311 0.003 
1.322 0.012 
1.329 0.012 
1.347 0.021 
1.301 0.0225 
1-378 0-0285 
1.325 0.030 
1.314 0.030 
1.333 0.0315 
1.294 0.045 
1.315 0.045 

12 
0.000742 
0.000492 
11.6(11) 

Table 1. Calculation o f  )(,2 f o r  selected crystallographic data 

N--H Cytosine Uracil 
bond lengths (A) N(1) -C(2) -N(3)  C(5) -C(4) -O(4)  

(neutron data) bond angles (°)  bond angles ( o ) 

x, o(x3 x, o(x3 x, o(x,) 

1.045 0.0015 119.0 0.3 125.6 0.3 
1.041 0.0015 119.8 0.45 127.2 0.3 
1.054 0.003 118.8 0.6 125.1 0.3 
1.037 0.003 118.5 0.6 126.2 0.45 
1.025 0.003 119.7 0.6 125.2 0.45 
1.035 0.006 119.6 1.05 125.9 0.45 
1-027 0.0075 118.4 1.05 123.5 0-6 
1.030 0.0075 115.0 1.5 127.0 1.05 
1.048 0.0075 119.2 3.45 126.1 1.2 
1.035 0.0075 118.3 5.4 124.4 0.45 
1.040 0.009 118.6 5.4 126.3 0.45 
1.022 0.009 117.7 7.5 126-8 0.9 
1.027 0.0105 111.5 7-5 125.9 1.8 

125.6 2.1 
129.9 2.25 

13 13 15 
0.0000434 14.50 1-18 
0.0000923 5.33 2.07 
70.5 (12)t 14.0 (12) 61.7 (14)~" 

* Degrees of freedom in parentheses. 
5" Significant at a = 0.05. 

( C ) O - P - O ( H )  
bond angles of H . . .  O hydrogen 

ROPO3H- bond lengths (./%) 
groups (°)  (neutron data) 

x, o(x3 

105.5 O. 15 
106.2 0.3 
99.3 0.3 

101.5 0.3 
105.5 0.3 
106.1 0.45 
104.3 0.45 
103.5 0.45 

8 
0.12 
6.06 

503.8 (7)5" 

x, o(x,) 

1.814 0.0015 
1.844 0.003 
1.728 0.003 
1.832 0.003 
2.121 0.003 
1.997 0.0075 
1.808 0.0075 
1.833 0.009 
1.739 0.009 
1.772 0.009 
1.742 0.0105 
1.877 0.012 
1.948 0.012 

13 
0.00006 
0.01284 

11245 (12)t 
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valence angles (5). These parameters are easily distor- 
ted and are found in a wide variety of crystallographic 
environments. The exocyclic C(5) -C(4) -O(4)  bond 
angle in uracil (6) is also significantly affected by its 
environment, but probably not to the same extent as the 
(C)O--P--O(H) angle [for which 0 .2 (sample) >> 0.2(xi)]. 
The H . . .  O distance is an extreme example of a 'soft' 
parameter which is very sensitive to changes in the 
environment. 

NH 2 NH2 

I I 
(3) (4) 

OH 

7 o  
/ J:'- 

0 

0 4  

H 
HN/C4~c5 

I 
(5) (6) 

Our limited experience with the ,~2 test suggests that 
it is a sensitive indicator of the presence of environ- 
mental effects. However, a possible objection to its use 
is that the test will be invalidated by serious errors in 
the 0.(xi). In case of doubt, a convenient rule-of-thumb 
is to assume that environmental effects are present 
unless o2(sample) < o2(xl). This is always a safe 
criterion because the statistical techniques appropriate 
to model B are also valid for model A, provided that 
02(sample) > 0.2(xi) (see § V). More detailed discussion 
of methods for choosing between models A and B can 
be found in the statistical literature (Cochran, 1954, 
and references therein). 

IV. Model ,4: environmental effects negligible 

When environmental effects are negligible, the average 
molecular dimension is best (i.e. most precisely) 
estimated by using the weighted mean [Jw in equation 
(6)]. The standard error of Xw is given approximately 
by: 

0.(yew ) = 1/0.2(xl) 1/2 = (1/Y. wi) u2. (10) 
= 1=1 

Table 2 illustrates the calculation of Xw and o(YCw) for 
the sample of thirteen cytosine N(1 ) -C(2 ) -N(3 )  
valence angles referred to in the previous section. For 
comparison, the unweighted mean [xu in equation (9)] 
is also given, together with its standard error: 

i.e. 

a( fcu) = o(sample)/ v ~  

a(ku) = [ ~ ,  (x , - fq , )2/k(k  - 1)] ',2. 

(11) 

(12) 

In this example, the precision of the weighted mean is 
better than that of the unweighted mean by a factor of 
more than 3 (0.64/0.19 ~ 3.4). However, the 
unweighted mean of the seven most precise observa- 
tions (those above the broken line in Table 2) is 
119.11 °, with a standard error of 0.22 °. This suggests 
that when environmental effects are negligible, the 
unweighted mean of a subset of the most precise 
observations in the sample is often a good alternative to 
the weighted mean of the complete sample. Presum- 
ably, this is due to the sharp decrease in w i as o(x i) 
increases (see Table 2). 

Equation (10) is based on the assumption that the 
o(xi) are exact estimates of the experimental standard 
deviations of the corresponding xi (an assumption often 
made in crystallographic studies). When this is not a 
good approximation, the value of 0.(-rw) obtained from 
equation (10) will be too small. The extent to which 
o(YCw) is underestimated in any given case cannot be 
determined precisely. However, Cochran & Carroll 
(1953) studied the effect of errors in the o(xi) (and 
hence in,the weights, wt) on the variance of the weighted 
mean. Their results suggest that the neglect of un- 
certainties in the 0.(xt) is unlikely to cause serious 
underestimation of o(YCw) unless equation (10)is used 
with a very large sample of observations, or the obser- 
vations are taken from structure determinations with 
unusually low (reflection/parameter) ratios. In these 
cases, it might be better to use an unweighted mean. 

Table 2. Calculation of weighted mean: cytosine 
N(1)-C(2)--N(3) bond angles (o) 

w! 
xt a(x3 o'(x~) [= 1/o2(xt)] 

119.0 0.3 0.0900 11.111 
119.8 0.45 0.2025 4.938 
118.8 0.6 0.3600 2.778 
118.5 0.6 0.3600 2.778 
119.7 0.6 0.3600 2.778 
119.6 1.05 1.1025 0.907 
118.4 1.05 1.1025 0.907 

115.0 1.5 2.2500 0.444 
119.2 3.45 11.9025 0.084 
118-3 5.4 29.1600 0.034 
118.6 5.4 29.1600 0.034 
117.7 7.5 56.2500 0.018 
111.5 7.5 56.2500 0.018 

-rw = 119.07 -¢u = 118.01 
a(8 w)= 0.19 o ( ~ ) =  0.64 



ROBIN TAYLOR AND OLGA KENNARD 521 

V. Model B: environmental effects not negligible 

When environmental effects are not negligible, the ith 
observation is given by: 

xt = g~ + ei = g + (gt - g) + el (13) 

where g is the overall mean of the g~, i.e. the quantity 
we wish to estimate (see §III). Part of the variation in 
the x i is due to experimental errors and part is due to 
differences between the g~: 

02(sample)= 02(g) + 02(exptl). (14) 

An estimate of 02(exptl) is provided by the quantity 
02(xl) in equation (7), and o2(sample) is given by 
equation (8). Thus, 02(g) can be estimated as: 

02(#) = o2(sample) - o2(xt) (15) 

i.e. 
k k 

02(g)= Y (xt-YCu)21(k - 1 ) -  Z 02(xi)l k. (16) 
l = l  1=1 

The quantities Ycw and o(Yc w) [equations (6), (10)] are 
no longer suitable as estimates of  the mean value of  the 
sample and its standard error. This is because they do 
not take into account the variance due to environ- 
mental effects, 0200. Instead, the average value of the 
sam,~le is best estimated by the semi-weighted mean, Y¢~: 

' 

x~= Z W, W, (17) 
l= 1 1 

where: 
Wl= 1/[02(#)+ 02(xi)]. (18) 

The standard error of 2~ is given approximately by: 

o(~,) = 1/ 1/2. (19) 
=1 

The semi-weighted mean is a compromise between 
the weighted (Xw) and unweighted (J~) means. When 
environmental effects are large compared with experi- 
mental errors [i.e. 02(#) >> o2(xt) for all i] the 
semi-weights are all given approximately by: 

W l ~ 1 / O 2 ( / / )  = a constant. (20) 

Thus, ~s tends towards Ju. When environmental effects 
are small compared with experimental errors [02(g) ,~ 
02(xt)] the semi-weights are approximated by: 

W l ~ 1/o2(xt) = w I (21) 

and -rs tends towards -rw. If we are very reluctant to 
assume that environmental effects are negligible, we 
can always legitimately use model B (i.e. calculate the 
semi-weighted mean) except when the estimate of o2(g) 
obtained from equation (16) is negative. Although 
physically meaningless, this will occasionally happen 
because of random sampling errors. 

Table 3. Calculation of  semi-weighted mean: uracil 
C (5)-C (4) -0(4)  bond angles (°) 

x, o(xp 
124.4 0.45 
126.3 0.45 
126.8 0.9 
125-9 1.8 
125.6 2.1 
129.9 2.25 

o2(xt) = 2.3213 
~ = 125.99 

o(~ s) = 0.62 

W I w t 
O2(Xt) { = l / [ o 2 ( g )  + 02(X~]} [=l /02(Xl ) ]  

0.2025 0.7491 4.9383 
0.2025 0.7491 4.9383 
0.8100 0.5148 1.2346 
3-2400 0-2287 0.3086 
4.4100 0.1804 0.2268 
5.0625 0.1614 0.1975 

o2(samp~) = 3.4537 o2(g) = 1.1324 
2w = 125.60 2~ = 126.48 

O(~w)= 0.29 o (£u )=  0.76 

The calculation of.rs and o(Js) is illustrated in Table 
3 for six of the uracil C(5) -C(4) -O(4)  angles given in 
Table 1. For comparison, the weighted and unweighted 
means are also given, although we emphasize that it 
would be inappropriate to use the weighted mean for 
this sample. The semi-weighted and unweighted means 
are not significantly different, but o(Y¢ s) is somewhat 
smaller than o(Ju). The apparent standard error of the 
weighted mean, calculated from (10), is far too small: 
0.29 °, compared with o(.rs) = 0.62 °. 

The calculation of 2s and o(J  s) is further illustrated 
in Table 4 for the eight ( C ) O - P - O ( H )  angles listed in 
Table 1. This molecular dimension is very sensitive to 
environmental effects and the incorrect application of 
equations (6) and (10) therefore leads to serious errors. 
In particular, the standard error estimated from 
equation (10) is too small by approximately an order of  

Table 4. Calculation of  semi-weighted mean: 
( C ) O - P - O ( H )  bond angles (o) 

Vv t w I 
xt o(xt) 02(xi) {=1/[02(#)+ 02(xi)l} [=ll02(xl)] 

105.5 0.15 0.0225 0.1678 44.4444 
106.2 0.3 0.0900 0.1659 I1.1111 
99.3 0.3 0.0900 0.1659 11.1111 

101.5 0.3 0.0900 0.1659 11.1111 
105.5 0.3 0.0900 0.1659 11.1111 
106.1 0.45 0.2025 0.1629 4.9383 
104.3 0.45 0.2025 0.1629 4.9383 
103.5 0.45 0.2025 0.1629 4.9383 

o2(x~) = 0.1238 o2(sample) = 6.0613 02(/0 = 5.9375 
5c s = 103.99 ~¢w = 104.36 ~t u = 103.99 

o( . t s )=  0-87 o(.~w)= 0.10 o(.¢u)= 0.87 

Table 5. Lower limits of  o(Ycs)/o(Yc u) 

I = o(~)/ [o2(x i ) l~ '2 
l o ( x , ) ]  . . . .  

[O(xl)imln. 0 1 2 3 4 5 10 

2 0-80 0.95 0.99 1.00 1.00 1.00 1.00 
3 0.60 0.89 0.98 0.99 1.00 1.00 1.00 
4 0.47 0.86 0.97 0.99 1.00 1.00 1.00 
5 0.38 0.83 0.96 0.99 0.99 1.00 1.00 

10 0.20 0.77 0.93 0.97 0.99 0.99 1.00 
20 0. l0 0.74 0.91 0.96 0.98 0.99 1.00 
30 0.07 0.73 0.91 0.96 0.98 0.99 1.00 
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magnitude. Because environmental effects are very 
important, the semi-weighted and unweighted means 
are virtually identical, as are their standard errors. This 
suggests that there is little advantage in using xs rather 
than -~u when 0 2 ( / / )  is relatively large. Cochran (1954) 
gives an approximate method for calculating the lower 
limit of the relative precision of the semi-weighted and 
unweighted means [i.e. the lowest possible value of 
o(Sq)/a(.;cu)] for given values o f / a n d  r, where: 

I = a(//)/[a2(xi)] u2 (22) 

r =  [O(xi)lmax./[lT(Xi)]mln.. (23) 

Representative results are given in Table 5. For 
example, the table shows that when a2(//) is equal to 
a2(xi) (i.e. I = 1) and the largest observational e.s.d, is 
five times the smallest one (i.e. r = 5), the lowest 
possible value of a(YCs)/a(5c u) is approximately 0.83. 
Clearly, the unweighted mean is a good alternative to 
the semi-weighted mean except when environmental 
effects are relatively small (I < ~1) or the range 
spanned by the a(xi) is large (r > ~ 10). 

Vl. Estimation using the Cambridge Structural 
Database (CSD) 

VI. 1. 'AS flags' 

CSD contains the atomic coordinates from over 
30000 organo-carbon crystal structure determina- 
tions. It is therefore likely to be a major source of 
crystallographic data in future determinations of 
average molecular dimensions. Unfortunately, the 
e.s.d.'s of the atomic coordinates are not stored in the 
database. Thus, calculation of weighted and semi- 
weighted means is impossible without reference to the 
original literature. A limited amount of information 
about the e.s.d.'s is incorporated in the form of 'AS 
flags'. Whenever possible, each new entry to the 
database is assigned an AS flag of 1, 2, 3 or 4, 
depending on the e.s.d.'s quoted for carbon-carbon 
distances in the report of the structure (Cambridge 
Crystallographic Data Centre User Manual, 1978). 
Thus, if the average value of these e.s.d.'s falls in the 
range 0.001-0.005/k,  the entry is given an AS  flag of 
1. Multiplication by the 'correction factor' of 1.5 (see § 
II.3) produces a 'true' e.s.d, range of 0.0015-0.0075 ,~ 

for AS  = 1. The corresponding ranges for AS = 2, 3, 4, 
are summarized in Table 6. 

It is possible to make use of the AS  flags in 
estimating average molecular dimensions. This is 
illustrated here for the simplest possible case: estima- 
tion of the average value of a bond length involving two 
first-row atoms [e.g. the N(7)-C(8)  distance in adenine 
derivatives]. We assume that: (i) each observation in 
the sample has assigned to it an A S flag of 1, 2, 3 or 4, 
(ii) the sample is moderately large (k > ~20), (iii) the 
e.s.d, of the ith observation, o(xi), can fall with equal 
probability anywhere within the range corresponding to 
the AS flag of the observation, but it cannot fall 
outside this range. Assumption (ii) is reasonable, since 
if the sample were small it would be practicable to 
retrieve the o(x t) from the original literature. 
Assumption (iii) is an approximation, one aspect of 
which is considered later. 

VI. 2. Choice of  mathematical model 

Suppose that the sample contains k~ observations with 
AS = 1, k2 observations with AS = 2, etc. The expected 
mean square value of the (corrected) e.s.d.'s of the 
observations with AS  = 1 is given by: 

0"0075 

E[t72(xt)]l = f a2 pr(a)do 
0'0015 

0"0075 

= f [o2/(0.0075-0.0015)]do (24) 
0"0015 

(Hamilton, 1964). Hence: 

E[dr2(Xl)] l ~ 0.0000233 A, 2. (25) 

The corresponding quantities E[a2(xi)]2 and E[rr2(xi)]3 
can be calculated in an analogous fashion (Table 6). 
The expected mean square value of the e.s.d.'s of 
observations with AS = 4, f[o2(Xi)]4, cannot be 
estimated, because the upper limit of the e.s.d, range is 
undefined. Therefore, these observations must be 
rejected. 

The expected mean square value of the e.s.d.'s of all 
observations in the sample (with AS  = 4 entries 
eliminated) can now be estimated as" 

233kl +_ ! 3_13k_2 +_ 9750k31 A2" 
E[o2(xi)] ~_ 10 -7 kl + k2 + k3 ] (26) 

Table 6. Cambridge Structural Database 'AS'flags 

AS Uncorrected e.s.d, range (/~) Corrected e.s.d, range (/~,) E[a2(xt)] 

I 0.001 < o(xt) < 0.005 0.0015 < o(xt) < 0.0075 0.0000233 
2 0.005 < o(xt) < 0.010 0.0075 < o(xt) < 0.015 0.0001313 
3 0.010 < o(xt) < 0.030 0.015 < o(x~) <_ 0.045 0.0009750 
4 0.030 < o (x t) 0.045 < o(xt) 

Partiflweight 
{= I /E[a2(x~l } 

43011 
7619 
1026 
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For example, application of equation (26) to the sample 
of adenine N(7) -C(8)  distances in Table 1 (for which 
k I = 2, k 2 = 2, k 3 = 8) gives: 

E[a2(xt)] ~_ 0.00068 A 2. (27) 

The correct value of a2(xi), obtained from equation (7), 
is 0 .00074A 2. Thus, in this example the value 
estimated from equation (26) is a good approximation 
of the true value, even though the sample size is small. 
The approximate value of tr2(xl) may now be used to 
assess the importance of environmental effects. We 
suggest that environmental effects should be regarded 
as being significant unless a2(sample) is less than 
E[tr2(xi)], and there are no strong chemical grounds for 
believing that environmental effects are important. In 
view of the approximations involved in deriving 
equation (26), it is doubtful whether any more 
sophisticated procedure is justified. 

VI. 3. Model A: environmental effects negligible 

If environmental effects are negligible, the best 
estimate of the mean is the weighted mean. However, 
since this cannot be calculated without recourse to the 
original literature, we are obliged to use an alternative. 
One possibility is to calculate the unweighted mean of 
the most precise observations in the sample, e.g. all 
those with AS  < 3. The example in Table 2 suggests 
that this may give excellent results and our own general 
experience supports this belief. However, if the sample 
contains relatively few precise observations, we may be 
reluctant to use this method. An alternative is to weight 
each observation according to its A S flag. For example, 
an observation with AS  = 1 is weighted by a factor of 
1/E[a2(xi)]l, i.e. 43 011. Weights for AS  = 2, 3 are 
calculated in an analogous fashion (Table 6). Thus, we 
define a partially-weighted mean, Ycv, as: 

(4, 3011 7. x j+7619  7. x t +  1026 ~ Xm 
.,~p = j = l  1=1 m = l  ( 2 8 )  

(43 011k~ + 7619k 2 + 1026k3) 

where Y~LI represents summation over all observa- 
tions with AS  = 1, etc. Equation (28) can also be 
written as: 

(43 011kl[.~u] l + 7619k2[.~u] 2 + 1026k3[:c~]3) 

(43 011k I + 7619k 2 + 1026k3) (29) 

Table 7. Calculation of  partially-weighted mean: 
adenine N(7) -C  (8) bond lengths (A) 

Partial  weight  w t 
x I a(xt) a2(x~ A S {= 1 /E[a2(x~]  } [ = 1/a2(xt)] 

1.315 0.003 0.000009 1 43011 111111 
1.311 0.003 0.000009 1 43011 111111 
1.322 0.012 0.000144 2 7619 6944 
1.329 0.012 0.000144 2 7619 6944 
1.347 0.021 0.000441 3 1026 2268 
1.301 0.0225 0.000506 3 1026 1975 
1.378 0.0285 0.000812 3 1026 1231 
1.325 0.030 0.000900 3 1026 1111 
1.314 0.030 0.000900 3 1026 1111 
1.333 0.0315 0.000992 3 1026 1008 
1.294 0.045 0.002025 3 1026 494 
1.315 0.045 0.002025 3 1026 494 

~p= 1.3157 k w = 1-3144 xu = 1.3237 
o(~p) = 0.0030 a(~w) = 0.0020 o ( ~  = 0.0064 

weighted means are also given. The results show that, 
in this example, .~p and tr(.~p) are very good approxi- 
mations of-~w and a(:Cw), respectively. In contrast, the 
unweighted mean and standard error are relatively poor 
approximations. 

We further examined the performance of the 
partially-weighted mean by a simulation. The pro- 
cedure was as follows. A pseudo-random number 
generator was used to generate a hypothetical sample 
of 28 observations, four with AS = 1, eight with A S = 
2, and sixteen with AS = 3. The e.s.d, of each 
observation was chosen at random from a uniform 
distribution in the appropriate range (e.g. 0.0075-  
0.015 A for an observation with AS  = 2). The value of 
the observation itself was chosen at random from a 
normal distribution with a mean of 1.54 A and a 
standard deviation equal to the e.s.d, already assigned 
to the observation. When all of the observations and 
e.s.d.'s were chosen, the quantities ~p, o(:cp), :c w, 0(:%), 
-~u and tr(~,) were calculated. The complete procedure 
was then repeated until a total of 3000 hypothetical 
samples had been generated. At this point, the results 
were as summarized in Table 8. The r.m.s, values of 
( -~w-  ~p) and [tr(.~w) - tr(kp)] were 0.0012 and 
0.0005 ](, respectively. In contrast, the r.m.s, values of 
(Xw - -~,) and [tr(~w) - a(J~)] were 0.0043 and 
0.0031 A, respectively. Thus, the performance of the 
partially-weighted mean was much better than that of 
the unweighted mean. The maximum and minimum 
values of (-~w- -~p) and [tr(.~w)- tr(~p)] give some 

where [-~,]l is the unweighted mean of all observations 
with AS  = 1, etc. The standard error of ~p can be 
estimated approximately as: 

tr(.~p) = [1/(43 01 lkl  + 7619k2 + 1026k3)] u2. (30) 

The calculation of .~p and a(Ycp) is illustrated in Table 
7 for the adenine N(7) -C(8)  bond lengths listed in 
Table 1. For comparison, the weighted and un- 

Table 8. Results of  simulation comparing partially- 
weighted, unweighted and weighted means (A) 

(~w- ~p) (.%- ~,) la(~) - o(~Al [a(.%)- a(~u)l 

Mean 0.0000 0.0000 -0 .0004  - 0 . 0 0 3 0  
R.m.s. 0.0012 0.0043 0.0005 0.0031 
Min. - 0 . 0 0 4 9  - 0 . 0 1 4 8  -0 .0011  -0 .0065  
Max. 0.0050 0.0137 0-0004 -0 .0002  
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Table 9. Results of  simulations comparing precisions 
o f  semi-weighted and unweighted means (A) 

~)la(~) 
o(sample) Mean Min. Max. 

0.030 0.76 0.28 0.92 
0.035 0.89 0.79 0.95 
0.040 0.94 0.89 0.97 
0.045 0.96 0.94 0.98 
0.050 0.97 0.96 0.99 
0.055 0.98 0.97 0.99 
0.060 0.99 0.98 0.99 

indication of the reliability of the partially-weighted 
mean when assumption (iii) of § VI. 1 breaks down (i.e. 
when the distribution of e.s.d.'s for observations with a 
given A S  flag is not very uniform). The results are 
encouraging. Thus the maximum absolute discrepancy 
between :~w and ~j, was about 0.005/k;  the largest 
difference between a(.~) and a(xp) was only 0.001 A. 

VI. 4. Model B: environmental effects not negligible 

When environmental effects are not negligible, the 
best estimate of the mean is ~s [equations (17), (19)]. 
However, this quantity cannot be calculated from the 
information in CSD. Fortunately, the results in Tables 
3-5 suggest that the unweighted mean, xu, is usually a 
good alternative. We confirmed this by means of a 
series of simulations. The procedure in each simulation 
was as follows. A pseudo-random number generator 
was used to generate 3000 hypothetical samples, each 
containing 50 observations. The e.s.d.'s of the hypo- 
thetical observations were chosen at random from a 
uniform distribution in the range 0 .0015-0 .045A 
(corresponding to observations with A S < 3). All of the 
samples were assumed to be of equal variance, this 
variance being set to a predetermined value [for 
example, in the first simulation we chose tr2(sample) = 
0.0009/k 2, i.e. a(sample) = 0.03/k]. The quantities 
a(~u) and a ( ~ )  were calculated for each sample from 
equations (11) and (19), respectively. Thus, the relative 
precision of the semi-weighted and unweighted means, 
tr(Ycs)/tr(SCu), was estimated. The average, minimum and 
maximum values of this quantity over the 3000 samples 
were then printed out. 

The results are summarized in Table 9. They show 
that when tr(sample) > 0.035/k, the unweighted mean 
is a very satisfactory alternative to the semi-weighted 
mean. When it(sample) = 0.030 A, the precision of the 
unweighted mean is sometimes very poor relative to 
that of the semi-weighted mean. However, the average 
relative precision (___0.76) is still quite satisfactory. 

VII. Summary 

The estimation of average molecular dimensions is a 
statistical problem of surprising complexity. When the 

observational e.s.d.'s are available, the procedure may 
be summarized as follows: (1) Determine whether 
environmental effects are important by comparing 
t72(xi) with o2(sample) [equations (7), (8)], and by 
calculating the Z 2 statistic, equation (4). (2) If environ- 
mental effects are small, calculate the weighted mean, 
~ [equations (6), (10)]. (3)If  environmental effects are 
moderate, calculate the semi-weighted mean, ~s 
[equations (17), (19)]. (4) If environmental effects are 
large, calculate the unweighted mean, xu [equations (9), 
(12)]. 

When the observational e.s.d.'s are not available (i.e. 
we are using CSD), the procedure must be modified as 
follows: (1) Determine whether environmental effects 
are important by comparing the quantities E[o2(xt)] 
and o2(sample) [equations (26), (8)], and by consider- 
ing the nature of the molecular dimension (e.g. is it 
easily distorted from its equilibrium value?). (2) If 
environmental effects are small, either calculate the 
unweighted mean of the most precise observations in 
the sample, or calculate the partially-weighted mean, ~p 
[equations (28), (30)]. (3) If environmental effects are 
moderate or large, calculate the unweighted mean. 

Many of the formulae given in this paper are based 
on the approximation that the o(x~) are exact estimates 
of the experimental standard deviations of the corre- 
sponding x~. This is equivalent to assuming that 
sampling errors in the quantities w~ and /,V~ [equations 
(5), (18)] are negligible. The assumption is made in 
order to simplify the statistical analysis and will 
probably result in a slight underestimation of the 
standard errors of weighted and semi-weighted means. 
Our analysis shows that -~u is often a good alternative 
to ~ and Xs, even assuming that the o(x~) are exact. 
Thus, the unweighted mean will probably be satis- 
factory for most samples of crystallographic data. The 
weighted, partially-weighted and semi-weighted means 
will be useful when environmental effects are small and 
the range spanned by the o(x~) is large. 
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A b s t r a c t  ~ a 

An error in printing is corrected. In the paper by Schwartz, 
Parise, Prewitt & Shannon [Acta Cryst. (1983). B39, 
217-226] Fig. 3 (a) is shown incorrectly. The correct version 
of the figure showing the C-centered MPtaO 6 structure 
projected down [001 ] is presented. 

* Current address: Lawrence Livermore National Laboratory, 
PO Box 808, L-396, Livermore, CA94550, USA. 
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Fig. 3. (a) OR TEP drawing of the C-centered MPt306 structure 
projected down [001 ]. 
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